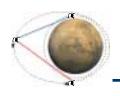
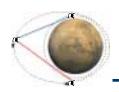


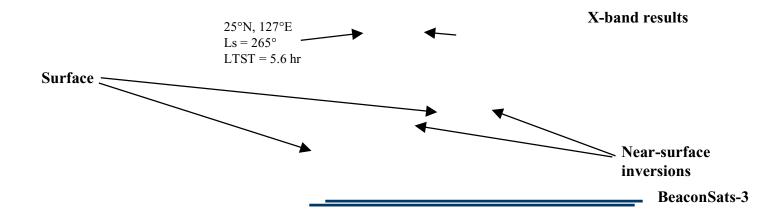
NASA National University Satellite Programs Workshop

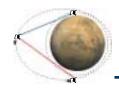

Science Missions Utilizing Microwave Beacon Microsatellites

E. R. Kursinski University of Arizona 5 April 2002



Radio Occultation Measurements


- Measurements of radio signal between spacecraft during occultations (rising or setting) provide high-accuracy, high-resolution atmospheric measurements
 - Doppler shift yields refractivity, CO₂ density, pressure and temperature profiles
 - Attenuation of signal at constituent absorption lines yields constituent density profile (e.g. H₂O)



Radio Occultation Accuracy and Resolution

- Measure atmospheric water concentration and relative humidity with high accuracy and 0.1-0.25 km vertical resolution
- Measure temperature to sub-Kelvin accuracy with 0.1-0.5 km vertical resolution
- Measure CO₂ density and therefore bulk pressure versus height with 0.1% accuracy and 0.1-0.5 km vertical resolution

Occultation Mission Overview

- Satellite microwave occultations characterize the atmosphere with
 - very high vertical resolution
 - accuracy
 - in clear or cloudy conditions
- Satellite to satellite occultations provide global coverage for climate and weather observations including diurnal coverage
- Atmospheric profiles of
 - Temperature and pressure versus height
 - Constituents: H₂O, O₃, HDO, CO₂ (on Mars)
 - Winds (indirectly)
- Global coverage requires at least 2 satellites in high inclinations, one carrying a transmitter and the other carrying a receiver
- Mars Atmospheric Constellation Observatory is Mars Scout mission concept built around microwave satellite to satellite occultations

Occultations with Beacon Satellites

- Deploying beacon satellites would provide extra occultation signal sources
- X-band signals are obvious choice for Mars
 - Compatible with spacecraft telecom design and DSN
 - Readily available components
- Each occultation would profile
 - CO₂ density, pressure, and temperature
 - Winds (indirectly through horizontal pressure gradient)
- With 1 W radiated power and omni-directional antenna could produce occultations with
 - Very high accuracy
 - 1 km vertical resolution
 - From surface to 50 km altitude

Minimal characteristics of beacon satellite

- Omni-directional microwave antenna
- X-band amplifier (~1 W RF out)
- X-band Exciter
- Ultra Stable Oscillator
- Power system
 - Solar panels (body mounted)
 - Battery (USO must be powered during eclipses)
 - Switch on at orbital deployment
- Structure
 - Cube ~0.5 m across (to meet power requirements)
- NO attitude control system
- NO telemetry or commanding systems

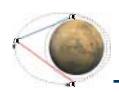
Number of satellites

- Satellite to satellite occultation missions are limited in their sampling density by the number of satellites
- More occultations would provide better coverage and improve
 - Characterization of weather related phenomena
 - Regional coverage
 - Wind estimates
- Increasing number of occultations requires more satellites
 - Satellites provide both the signal sources and the receivers
- Beacons offer an inexpensive enhancement
 - Beacons provide additional signal sources to increase the number of occultation profiles

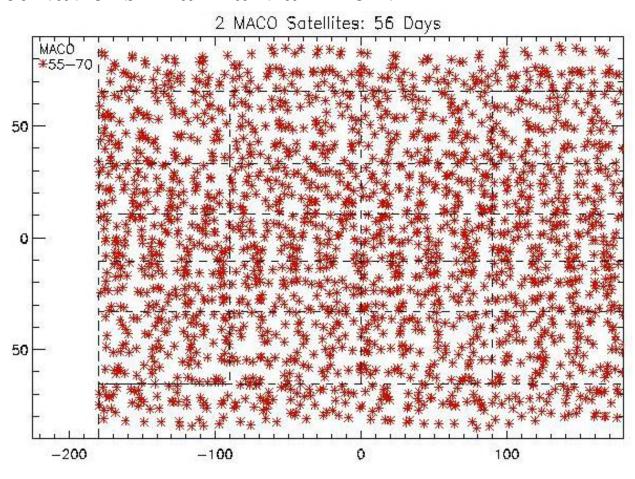
Occultations vs. number of beacons

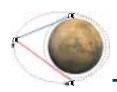
• With two satellites with full transmit and receive capability

- 2 satellites: 4 occ/orbit

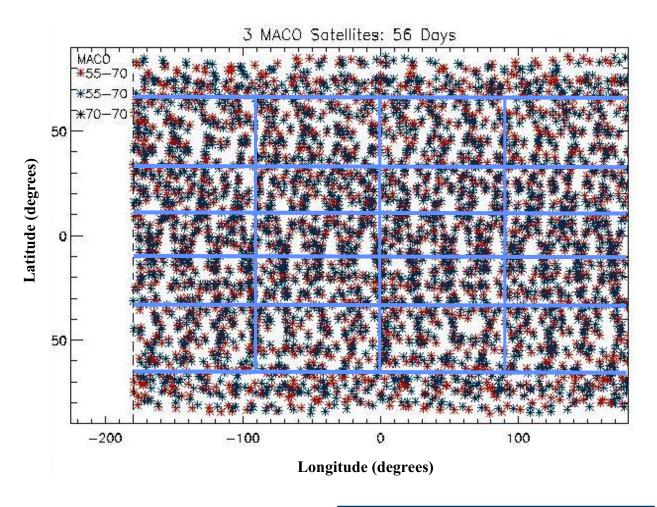

- And we add beacon satellites
 - Add 4 occ/orbit per MACO satellite beacon pair

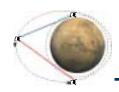
# of beacons	Additional Occ/orbit
1	8
2	16
3	24


How many satellites does MACO need?

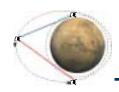

- Principal science coverage objectives:
 - Global coverage
 - Full sampling of diurnal cycle within a Martian month by region
 - Wind coverage
- Global and diurnal coverage can be achieved well with minimum two-satellite constellation
 - A third satellites doubles or triples the coverage depending on its orbit
- Wind coverage is substantially better with three-satellite constellation
 - Can be achieved with 2 full satellites plus beacon

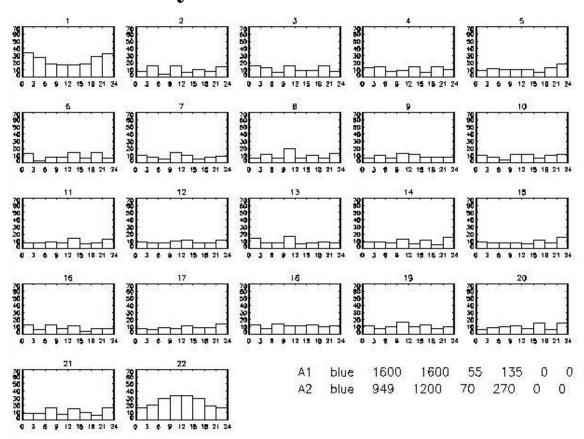
Global Coverage

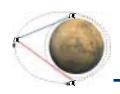

• 2 satellites yield more than 2000 globally distributed occultations in a Martian month



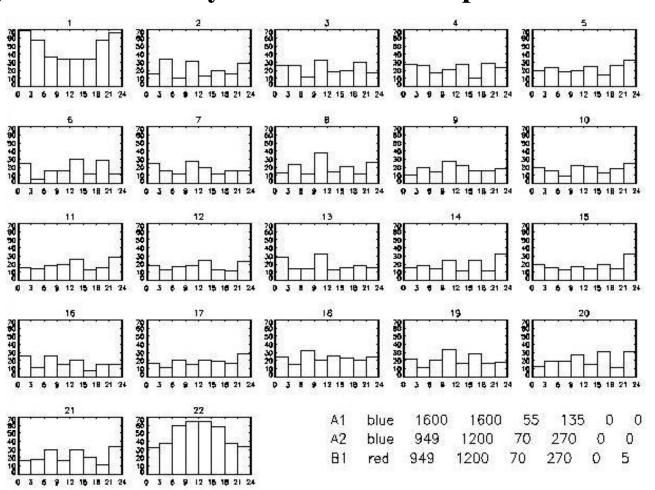
Global Coverage


• Three satellites yield more than 4000 globally distributed occultations each Martian month

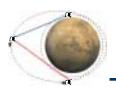

Diurnal Coverage

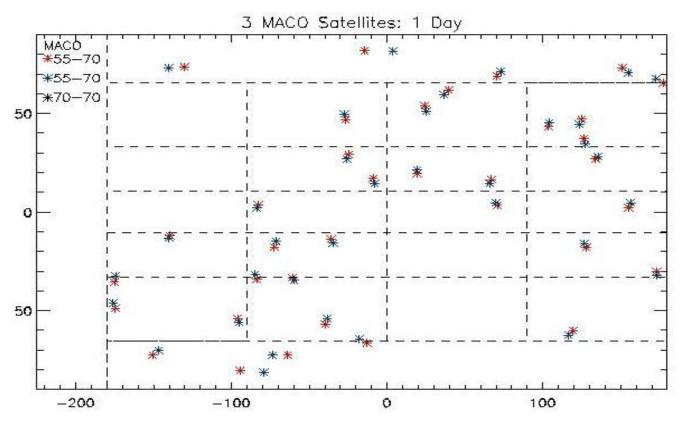

- Objective is characterization of diurnal cycle and exchange between surface and atmosphere
- Requires sampling the entire diurnal cycle over small fraction of annual cycle
- As our goal, chose to sample diurnal cycle regionally over a Martian month (55 days)

Diurnal Coverage with Two Satellites


 Average 11 occultations in each of 3 hour bins over 22 regions over 55 days with 2 satellites

Diurnal Coverage with 2 Satellites + Beacon


• Average 22 occultations in each of 3 hour bins over 22 regions over 55 days with 2 satellites plus beacon


Satellite coverage to measure winds

- Low-level balanced winds will be derived from pressure gradients via differenced occultation pressure profiles
 - Yields 1-2 m/s measurement accuracy
 - With high vertical resolution
 - To near the surface
 - Requires occultation profiles spaced closely in space and time
- Three satellites offer substantial improvement over two
 - With 2 satellites, time separation between spatially close profiles is 12,
 24... hours apart
 - Therefore diurnal and synoptic scale changes in pressure field alias into pressure gradient estimates
- Three-satellite mission can distinguish between mean transport and eddy transport
- =>Wind objectives can be accomplished with 2 satellites + beacon

Wind Coverage using Beacon Satellite

- Beacon satellite would follow one MACO satellite in orbit, yielding occultation profile pairs (with other MACO satellite)
 - Occultation pairs will be close in space and time
 - Balanced-wind speed will be determined with 1-2 m/s accuracy

Mission Design using Beacon Satellite

- Launch three spacecraft (2 full spacecraft + beacon) on Delta 2925H
- Two full spacecraft separate from each other after launch
 - Beacon remains attached to one of the full spacecraft
 - Cruise independently to Mars
- Perform Mars orbit insertion into 24-48 hour period
 - Aerobrake into operational orbits
 - ~2 hour period, altitude of 400-700 km
- Deploy beacon satellite,
 - Beacon satellite trails (or leads) one of the two full satellites in same orbit

Summary

- Satellite to satellite microwave occultation missions provide powerful method of characterizing planetary atmospheres
 - Global coverage and unprecedented diurnal coverage
 - Very high accuracy and vertical resolution
- Beacon satellites can significantly increase coverage of occultation missions
 - Adding single beacon to 2 satellite mission
 - Doubles or triples coverage
 - dramatically improves wind and flux estimates
- Beacons offer significant increase in science for very little cost